BINOMIAL THEOREM_SYNOPSIS

Greatest term (numerically) in the expansion of $(1+x)^n$

Method 1

Let T_r (The rth term) be the greatest term.

Find T_{r-1}, T_r, T_{r+1} from the given expansion.

Put $\frac{T_r}{T_r} \ge 1$ and $\frac{T_r}{T_r} \ge 1$. This will give an inequality from where value or

values of r can be Obtained. Then, find the r th term T_r which is the greatest term.

Method 2

Find the value of
$$k = \frac{(n+1)|x|}{1+|x|}$$

If k is an integer, then T_k and T_{k+1} are equal and both are greatest terms.

If k is not an integer, then $T_{[k]+1}$ is the greatest term, where [k] is the greatest integral

part of k.

Problem solving:

To find the greatest term in the expansion of $(x+y)^n$, write

$$(x+y)^n = x^n \left(1 + \frac{y}{x}\right)^n$$
 and then

find the greatest term in $\left(1+\frac{y}{r}\right)^n$

Middle term in the Binomial expansion

The middle term in the binomial expansion of $(x+y)^n$ depends upon the value of n.

If n is even, then there is only one middle term, i.e., $\left(\frac{n}{2}+1\right)th$ term.

If n is odd, then there are two middle terms, i.e., $\left(\frac{n+1}{2}\right)th$ and $\left(\frac{n+3}{2}\right)th$ terms.

•	Important points:
	When there are two middle terms in the expansion, their binomial
	coefficients are equal.
	Binomial coefficient of the middle term is the greatest binomial
	coefficient.
	pth term from the End in the Binomial Expansion of
	<i>pth</i> term from the end in the expansion of $(x+y)^n$ is $(n-p+2)$ th term
	from the beginning.
•	Properties of Binomial coefficients
	In the binomial expansion of $(x+y)^n$, the coefficients ${}^nC_0, {}^nC_1, {}^nC_2{}^nC_n$ are
	denoted by
	$C_0, C_1, C_2, \dots C_n$ respectively.
	If <i>n</i> is even, then greatest coefficient = ${}^{n}C_{n/2}$
	If <i>n</i> is odd, then greatest coefficient is ${}^{n}C_{(n-1)/2}$ or ${}^{n}C_{(n+1)/2}$

Explanation

By the binomial theorem, we have

$$(1+x)^n = {^nC_0} + {^nC_1}x + {^nC_2}x^2 + \dots + {^nC_n}x^n$$

Or,
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$

Putting x = 1, we get $2^n = C_0 + C_1 + C_2 + + C_n$

Therefore Sum of the binomial coefficients = 2^n

4.
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

Explanation

We have, $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$

Putting x = -1, we get

$$0 = C_0 - C_1 + C_2 - C_3 + C_4 - \dots + (-1)^n C_n$$

$$\Rightarrow C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots$$

$$= \frac{1}{2} \text{ of the sum of all the coefficients} = \frac{1}{2} \cdot 2^n = 2^{n-1}$$

5.
$$C_0 - C_1 + C_2 - C_3 + C_4 - C_5 + \dots + (-1)^n C_n = 0$$

$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)!}{(n!)^2} = {}^{2n}C_n$$

Explanation

planation
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
......(1)

Also,
$$(x+1)^n = C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n$$
 (2)

Multiplying (1) and (2), we have

$$(1+x)^{2n} = [C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n] \times [C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n]$$

Equating coefficients of x^n on both sides of (3), we get

$$^{2n}C_n = C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$$

Hence sum of the squares of coefficients = ${}^{2n}C_n = \frac{(2n)!}{(n!)^2}$

7.
$$C_0^2 - C_1^2 + C_2^2 + C_3^2 \dots = \begin{cases} 0, & \text{if } n \text{ is odd} \\ (-1)^{n/2} \cdot {}^n C_{n/2}, & \text{if } n \text{ is even} \end{cases}$$

$$\mathbf{R}_{-}$$
 $C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n = {}^{2n}C_{n-1}$

$$C_0C_r + C_1C_{r+1} + \dots + C_{n-r}C_n = {}^{2n}C_{n-r} \text{ or } {}^{2n}C_{n+r}$$

10.
$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$$

11.
$$C_1 - 2C_2 + 3C_3 - \dots = 0$$

12.
$$C_n + 2C_1 + 3C_2 + \dots + (n+1)C_n = (n+2)2^{n-1}$$

Properties of ${}^{n}C_{r}$

If $0 < r < n, n, r \in \mathbb{N}$, then

1.
$$r.^{n}C_{r} = n.^{n-1}C_{r-1}$$

2.
$$\frac{{}^{n}C_{r}}{r+1} = \frac{{}^{n+1}C_{r+1}}{n+1}$$

$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1}$$

4.
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{r+1}{n-r}$$

6.
$${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$$

7.
$${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x = y \text{ or } x + y = n$$

$$^{n}C_{r}=^{n}C_{n-r}$$

9.
$${}^{n}C_{r}$$
 is greatest if $r = \begin{cases} n/2 \text{ if } n \text{ is even} \\ \frac{n-1}{2} \text{ or } \frac{n+1}{2} \text{ if } n \text{ is odd} \end{cases}$

10. The greatest term in $(1+x)^{2n}$ has the greatest coefficient if

$$\frac{n}{n+1} < x < \frac{n+1}{n}.$$

• Multinomial theorem for a positive integral index

If x_1, x_2, \dots, x_k are real numbers, then for all $n \in \mathbb{N}$, $(x_1, x_2, \dots, x_k)^n$

$$\sum_{\underline{r_1 + r_2 + \dots + r_k = n}} \frac{n!}{r_1! r_2! \dots r_k!} x_1^{r_1} \dots x_2^{r_2} \dots x_k^{r_k}$$

 r_1, r_2, r_k are all non-negative integers.

Note:

The general term in the above expansion is

$$\frac{n!}{r_1!r_2!...r_k!}x_1^{r_1}.x_1^{r_2}...x_k^{r_k}$$

The total number of terms in the above expansion is = number of nonnegative

integral solutions of the equation

$$r_1 + r_2 + ... + r_k = n = {n+k-1 \choose n} or {n+k-1 \choose k-1}$$

The coefficient of $x_1^{r_1}.x_1^{r_2}...x_k^{r_k}$ in the expansion of

$$(a_1x_1 + a_2x_2 + \dots + a_kx_k)^n = \frac{n!}{r_1!r_2!\dots r_k!} a_1^{r_1} a_2^{r_2} \dots a_k^{r_k}$$

Greatest coefficient in the expansion of $(x_1 + x_2 + \dots + x_k)^n = \frac{n!}{(q!)^{k-r} \cdot [(q+1)!]^r}$

Where q is the quotient and r the remainder when n is divided by k.

PROBLEM SOLVING

The number of terms in the expansion of $(x+y+z)^n$, where n is a positive integer, is $\frac{(n+1)(n+2)}{2}$

The number of terms in the expansion of $(x+y+z+w)^n$, where n is a positive integer, is $\frac{(n+1)(n+2)(n+3)}{6}$

Coefficient of $x^{n_1}y^{n_2}z^{n_3}$ in the expansion of $(x+y+z)^n$, is

$$\frac{n!}{n_1!n_2!n_2!}$$
, where $n = n_1 + n_2 + n_3$

In the expansion of $(x_1 + x_2 + \dots + x_k)^n$, the sum of all the coefficients is obtained by putting all the variables x_i equal to 1 and it is equal to k^n .

Coefficient of x^m in $(1+x^r)^n$ $(m,r \ and \ n\in N)$ is zero, if m is not an integral multiple of r, e.g., coefficient of x^{1000} in the expansion of $(1+x^3)^{4000}$ is 0 as 1,000 is not an integral multiple of 3.

Binomial Theorm for any index

If n is a rational number and x is real number such that |x| < 1, then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + \frac{n(n-1)(n-2)\dots(n-r-1)}{r!}$$
....(1)

In the above expansion, the first term must be unity. In the expansion of $(a+x)^n$, where n is either a negative integer or a fraction, we proceed as follows.

$$(a+x)^n = \left[a\left(1+\frac{x}{a}\right)\right]^n = a^n \left(1+\frac{x}{a}\right)^n =$$

$$a^n \left[1+n.\frac{x}{a} + \frac{n(n-1)}{2!}\left(\frac{x}{a}\right)^2 + \dots\right]$$

And the expansion is valid when $\left| \frac{x}{a} \right| < 1$ i.e |x| < |a|.

There are infinite number of terms in the expansion of $(1+x)^n$, When n is a negative integer or a fraction.

If x is so small that its square and higher powers may be neglected, then approximate value of $(1+x)^n = 1+nx$.

• General term in the expansion of $(1+x)^n$

The (r+1)th term in the expansion of $(1+x)^n$ is given by

$$T_{r+1} = \frac{n(n-1)(n-2)...(n-r-1)}{r!} x^{r}$$

• Some Important Deductions from $(1+x)^n$

Replacing n by -n in (1), we get

$$(1+x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + (-1)^r \frac{n(n+1)(n+2)\dots(n+r-1)}{r!}x^r + \dots$$

$$T_{r+1} = (-1)^r \frac{n(n+1)(n+2)....(n+r-1)}{r!} x^r$$

Replacing x by -x in (1), we get

$$(1-x)^{n} = 1 - nx + \frac{n(n-1)}{2!}x^{2} - \frac{n(n-1)(n-2)}{3!}x^{3} + \dots + (-1)^{r} \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^{r} + \dots$$

$$T_{r+1} = (-1)^r \frac{n(n-1)(n-2)....(n-r+1)}{r!} x^r$$

Replacing x by -x and n by -n in (1), we get

$$(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + (-1)^r \frac{n(n+1)(n+2)\dots(n+r-1)}{r!}x^r + \dots$$

$$T_{r+1} = (-1)^r \frac{n(n+1)(n+2)....(n+r-1)}{r!} x^r$$

• Some useful expansions

1.
$$(1+x)^{-1} = 1-x+x^2-x^3+....+(-1)^r x^r+...$$

2.
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$$

3.
$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots + (-1)^r (r+1)x^r + \dots$$

4.
$$(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots + (r+1)x^r + \dots$$

$$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \dots + (-1)^r \frac{(r+1)(r+2)}{2}x^r + \dots$$

$$(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2}x^r + \dots$$

BINOMIAL THEOREM ASSIGNMENT

If $C_0, C_1, C_2, \dots, C_n$ are the coefficients of the expansion of $(1+x)^n$, then the value of

$$\sum_{0}^{n} \frac{C_{k}}{k+1}$$
 is

a) 0

b) $\frac{2^{n}-1}{n}$ c) $\frac{2^{n+1}-1}{n+1}$

d) None of these

Larger of $99^{50} + 100^{50}$ and 101^{50} is 2.

a) 101⁵⁰

b) $99^{50} + 100^{50}$

c) Both are equal d) None of these

The greatest coefficient in the expansion of $(x+y+z+w)^{15}$ is 3.

a) $\frac{15!}{3!(4!)^3}$

b) $\frac{15!}{(3!)^3 4!}$ c) $\frac{15!}{2!(4!)^2}$

d) None of these

The sum of the series $\sum_{r=0}^{10} 20_{C_r}$ is 4.

a) $2^{19} - \frac{1}{2}.20_{C_{10}}$ b) $2^{19} + \frac{1}{2}.20_{C_{10}}$ c) 2^{19}

d) 2^{20}

5. $n+1_{C_2} + 2[2_{C_2} + 3_{C_2} + 4_{C_2} + \dots + n_{C_2}] =$

a) $\frac{n(n+1)(2n+1)}{6}$ b) $\frac{n(n+1)}{2}$ c) $\frac{n(n-1)(2n-1)}{6}$ d) None of these

If $A = 2n_{C_0} \cdot 2n_{C_1} + 2n_{C_1} \cdot 2n - 1_{C_1} + 2n_{C_2} \cdot 2n - 2_{C_1} + \dots$ then A is 6.

a) 0

b) 2^{n}

c) $n2^{2n}$

d) 1

The greatest integer which divides the number 101¹⁰⁰ –1 is 7.

a) 100

b) 1,000

c) 10,000

d) 1,00,000

If $\{x\}$ denotes the fractional part of x, then $\left\{\frac{2^{2003}}{17}\right\}$ is 8.

a) $\frac{2}{17}$

b) $\frac{4}{17}$

c) $\frac{8}{17}$

d) $\frac{16}{17}$

If [x] denotes the greatest integer less than or equal to x, then $[(6\sqrt{6}+14)^{2n+1}]$ 9.

a) Is an even integer

b) Is an odd integer c) Depends on n d) None of these

10.	The number of distinct terms in the expansion of $\left(x^3 + 1 + \frac{1}{x^3}\right)^n$; $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$ is				
	a) 2n	b) 3n	c) 2n + 1	d) 3n + 1	
11.	The sum to (n + 1) terms of the series $\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \dots$ is				
	a) $\frac{1}{n(n+1)}$	b) $\frac{1}{n+2}$	c) $\frac{1}{n+1}$	d) None of these	
12.	The integral part of $(8+3\sqrt{7})^n$ is				
	a) An even intege	r b) An odd integer	c) Zero	d) Nothing can be said	
13.	Let $R = (5\sqrt{5} + 11)^{2n+1}$ and $f = R - [R]$ where [] denotes the greatest integer function. The $Rf =$				
	a) 2^{2n+1}	b) 2^{4n+1}	c) 4^{2n+1}	d) None of these	
14.	If p is nearly equal to q and $n > 1$, then $\frac{(n+1)p + (n-1)q}{(n-1)p + (n+1)q} =$				
	a) $\left(\frac{p}{q}\right)^n$	b) $\left(\frac{q}{p}\right)^n$	c) $\left(\frac{p}{q}\right)^{1/n}$	d) None of these	
15.	The sum $\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$, (where ${p \choose q} = 0$ if $p > q$) is maximum when m is				
	a) 20	b) 15	c) 12	d) 10	
16.	The number of integral terms in the expansion of $(2\sqrt{5} + \sqrt[6]{7})^{642}$ is				
	a)105	b) 104	c) 108	d) 107	
17.	If the fourth term in the expansion of $\left(\sqrt{\frac{1}{x^{\log x+1}}} + x^{1/12}\right)^6$ is equal to 200 and $x > 1$, the				
	is equal to				
	a) 10	b) 15	c) 5	d) 20	
18.	The number of rational terms in the expansion of $(1+\sqrt{2}+\sqrt[3]{5})^6$ is				
	a) 13	b) 15	c) 19	d) 7	

	b)308 the expansion of (1-b) 226	c) 312 +3 $x^2 + x^4$) $\left(1 + \frac{1}{x}\right)^8$ is. c) 220	d) 183 d) 316 d) 217			
The coefficient of x^{-1} in (a) 232 If the last term in the bind	b)308 the expansion of (1-b) 226	c) 312 +3 $x^2 + x^4$) $\left(1 + \frac{1}{x}\right)^8$ is. c) 220				
The coefficient of x^{-1} in the last term in the bind	the expansion of (1-b) 226	$+3x^{2} + x^{4}) \left(1 + \frac{1}{x}\right)^{8} \text{ is.}$ c) 220				
a) 232 If the last term in the bind	b) 226	c) 220				
If the last term in the bind		,	d) 217			
	omial expansion of	$\left(2^{1/3} - \frac{1}{1}\right)^n$ is $\left(\frac{1}{1}\right)^n$				
from the beginning is	If the last term in the binomial expansion of $\left(2^{1/3} - \frac{1}{\sqrt{2}}\right)^n$ is $\left(\frac{1}{3^{5/3}}\right)^{\log_3 8}$, then the 5 th term					
from the beginning is						
a) 0.21	b) 21	c) 210	d) 2100			
The coefficient of x^4 in the expansion of $(1+x+x^2+x^3)^{11}$ is						
a) 975	b) 985	c) 990	d) 995			
The coefficient of the term independent of x in the expansion of						
$\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ is						
a) 210	b) 110	c) 310	d) 410			
The coefficient of $x^2y^3z^5$ in the expansion of $(x+y+z)^{10}$ is						
a) 2520	b) 25.2	c) 2.520	d) 0.2520			
If $(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, then $a_0 + a_3 + a_6 + \dots =$						
a) 3^{n+1}	b) 3 ⁿ	c) 3^{n-1}	d) None of these			
$\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots =$						
$\frac{\sigma_0}{1} + \frac{\sigma_2}{3} + \frac{\sigma_4}{5} + \frac{\sigma_6}{7} + \dots =$		2^n	d) None of these			
	b) $\frac{2^{n-1}}{n}$	(n+1)				
	$\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots =$					

If $a_0, a_1, a_2, \dots, a_{2n}$ be the coefficients in the expansion of $(1+x+x^2)^n$ in ascending 29.

powers of x, then $a_0^2 - a_1^2 + a_2^2 - a_3^2 + \dots - a_{2n-1}^2 + a_{2n}^2 =$

a) a_{2n}

- c) a_0
- d) None of these
- The coefficient of x^{50} in the expression $(1+x)^{1000} + 2x(1+x)^{999} + 3x^2(1+x)^{998} + \dots + 1001x^{1000}$ 30.

is

a) ${}^{1000}C_{50}$

- b) ${}^{1001}C_{50}$ c) ${}^{1002}C_{50}$
- d) None of these
- The sum of the series $\sum_{r=0}^{n} (-1)^r \cdot {^nC_r} \left[\frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \frac{15^r}{2^{4r}} + \dots to \ m \ terms \right]$ is 31.

- a) $\frac{1-\frac{1}{2^{mn}}}{2^m-1}$ b) $\frac{1-\frac{1}{2^{mn}}}{2^n-1}$ c) $\frac{1-\frac{1}{2^m}}{2^n-1}$ d) None of these
- If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then for n even, $C_0^2 C_1^2 + C_2^2 \dots + (-1)^n C_n^2$ is equal 32.

to

- a) 0
- b) $(-1)^{n/2} {}^{n}C_{n/2}$
- c) ${}^{n}C_{n/2}$
- d) None of these

KEY SHEET

1)c 2)a 3)a 4)b 5)a 6)c 7)c 8)c 9)a 10)c

11)d 12)b 13)c 14)c 15)b 16)c 17)a 18)d 19)a 20)c

21)a 22)c 23)c 24)a 25)a 26)c 27)c 28)a 29)b 30)b

31) B 32) B